EMPIRE XPU Tutorial

Array Antenna with Feeding Network

EMPIRE

Overview: Topics

Step 1: Start

- Start Empire XPU
- Select "New Project" Tab, OK
- File Save As (create new folder)
- Enter file name, e.g. array
- Click "Simulation Setup"
- Select "**EM Setup**" Tab

Start Frequency: 20 GHz

Stop Frequency: 30 GHz

Target Frequency: **24.5** GHz

- Select "Mesh" Tab
- Set Resolution: Coarse (10/3)
- Confirm OK, Close OK

Comment: Coarse (10/3) means:

- Minimum 10 cells per minimum wavelength
- Minimum 3 cells for each object's bounding box

Step 2: Create Layer Stack

Click "Add Group" 5 times, recolor groups Right Click on "Groups", select "Edit Group Tree" Double-click and edit Names, Start & Stop Values

Change "Substrate" property to Dielectric → Database → Dupont-951

OK

Metallization Thickness: 15 µm Metallization conductivity: infinite Substrate Material Dupont 951: $\varepsilon_r = 7.8$ All dimensions in µm

Step 3: Feed Network

Comment: Top view display is always assumed as default during structure setup

- Select "2D Design" Tab
- Select File → Import → 2D Layout → Import DXF (2D)
- Locate and select network.dxf *
- Confirm File dialog
- Drag&Drop new group into group "04"
- Uncheck "New" checkmark
- Click OK

Step 4: Substrate and Port

- Verify "active" group "Substrate", (if not, set active with right click)
- Click Create Box
- Set Point 1 x=-15000, y=-8000 Point 2: x=15000, y=8000
- OK, Zoom extents

- Right click on "Microstrip", Set Active
- Click 'Create Source'

 , Select 'Planar' 'MSL'
- Choose Direction y, 1700 (=port length)
- Base Point: x=0, y=-1600
- Click "Edit Settings", checkmark "Advanced"
- Adjust values: w=200, hb=200, Upside down: on
- Click 2x OK

Comments:

- Z-values of the groups defined in Step 2 will be used.
- Upside down is chosen because ground plane of MSL above the strip
- Length of the MSL is chosen large enough to establish proper mode at port plane

Step 5: Ground Plane with hole

- Right click on "Ground", Set active
- Click 'Create Box'
- Point 1: x=-15000, y=-8000
- Point 2: x=15000, y=8000, OK
- Click 'Create Box'
- Point 1: x=-370, y=-370
- Point 2: x=370, y=370, OK
- Right click on group "Ground"
- Choose "Select Group's Objects"
- Click 'Advanced Boolean Multiple
 Subtract' to cutout a section for the via

Comment: A cut-line is drawn to indicate that the result is a single object

Step 6: Stacked Patches and Via

Activate group "Top" (set active)

 Draw arrows across all patches by dragging left mouse button (Hint: Use patch corners as reference)

• Click to draw the Patches, OK

- Set group "Via" as active
- Click (Create Cylinder)
- Set x=0, y=0, Radius r=100
- OK

The square at the cursor indicates a snap to the corner of the object

+56.74 DEG

Comment: Here, the object snap helps to draw the arrows to create boxes with the same cross section as the patches of the feeding network.

Step 7: Check Input

- Select "3D Results"
- Adjust groups transparency sliders as shown

Step 8: Field Recording

- Select "2D Design" Tab
- Click "Create Field Monitor"

- Select EM Field 'Plane', OK
- Expand "Field Monitor" "FIELDMON 1
- Double click "Plane" Enter xy=600
- Click "Create Field Monitor"

- Select EM Far Field monitor Boundary, OK
- Expand "FIELDMON 2
- Set Display Origin x=0, y=0, z=5000*

*Point specifies far field center for display

Step 9: Simulation

- Click "Start Simulation", OK
- Wait to finish Simulation
- Check the results

Energy vs. timesteps

EMPIRE

Step 10: Results

S-Parameter

Impedance Z1.in

Step 11: Far Field Animation

- Return to 2D Design mode
- Switch On Monitor "EM Farfield"
- Switch to the 3D Results mode

Step 12: Near Field

→ Near Field Animation Definition

- Right Click on Planar EM Field Edit
- Field Components: z
- Animation Loop Type : phase_loop_15_deg
- Field Plot Amplitude: 2500, OK

E-Field in z direction

→ 3D Near Field Result

- Switch off visibility of "EM Farfield", "Substrate" and "Top"
- Switch on visibility of "Planar EM Field"
- Start Animation in 3D Results tab

